Lie Groups and Lie Algebras for Physicists (Record no. 2368)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 03710nam a2200313 a 4500 |
| 001 - CONTROL NUMBER | |
| control field | 00006226 |
| 003 - CONTROL NUMBER IDENTIFIER | |
| control field | WSP |
| 005 - DATE AND TIME OF LATEST TRANSACTION | |
| control field | 20230529172017.0 |
| 006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
| fixed length control field | m d |
| 007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
| fixed length control field | cr buu|||uu||| |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 091123s2014 si a sb 001 0 eng d |
| 020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
| International Standard Book Number | 9789814603287 |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | WSPC |
| Language of cataloging | eng |
| Transcribing agency | WSPC |
| 082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 512.55 |
| 100 1# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Das, Ashok and Okubo, Susumu |
| 245 10 - TITLE STATEMENT | |
| Title | Lie Groups and Lie Algebras for Physicists |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
| Place of publication, distribution, etc. | Singapore ; |
| Name of publisher, distributor, etc. | World Scientific Pub. Co., |
| Date of publication, distribution, etc. | ©2014. |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 360 p. : |
| 504 ## - BIBLIOGRAPHY, ETC. NOTE | |
| Bibliography, etc | Includes bibliographical references and index. |
| 505 0# - FORMATTED CONTENTS NOTE | |
| Formatted contents note | 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. |
| 520 ## - SUMMARY, ETC. | |
| Summary, etc. | The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras. |
| 533 ## - REPRODUCTION NOTE | |
| Type of reproduction | Electronic reproduction. |
| Place of reproduction | Singapore : |
| Agency responsible for reproduction | World Scientific Publishing Co., |
| Date of reproduction | 2014. |
| Note about reproduction | System requirements: Adobe Acrobat Reader. |
| -- | Mode of access: World Wide Web. |
| -- | Available to subscribing institutions. |
| 650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Lie algebras. |
| 650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
| Topical term or geographic name as entry element | Group theory. |
| 655 #0 - INDEX TERM--GENRE/FORM | |
| Genre/form data or focus term | Electronic books. |
| 776 1# - ADDITIONAL PHYSICAL FORM ENTRY | |
| International Standard Book Number | 9789814603270 |
| 856 40 - ELECTRONIC LOCATION AND ACCESS | |
| Uniform Resource Identifier | <a href="http://www.worldscientific.com/worldscibooks/10.1142/9169#t=toc">http://www.worldscientific.com/worldscibooks/10.1142/9169#t=toc</a> |
| Public note | ebook |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | E-Books |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Barcode | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Indian Institute of Technology Tirupati | Indian Institute of Technology Tirupati | 06/02/2018 | 512.55 | EB00298 | 06/02/2018 | 06/02/2018 | E-Books |