Lie Groups and Lie Algebras for Physicists (Record no. 2368)

MARC details
000 -LEADER
fixed length control field 03710nam a2200313 a 4500
001 - CONTROL NUMBER
control field 00006226
003 - CONTROL NUMBER IDENTIFIER
control field WSP
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230529172017.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr buu|||uu|||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 091123s2014 si a sb 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789814603287
040 ## - CATALOGING SOURCE
Original cataloging agency WSPC
Language of cataloging eng
Transcribing agency WSPC
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.55
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Das, Ashok and Okubo, Susumu
245 10 - TITLE STATEMENT
Title Lie Groups and Lie Algebras for Physicists
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Singapore ;
Name of publisher, distributor, etc. World Scientific Pub. Co.,
Date of publication, distribution, etc. ©2014.
300 ## - PHYSICAL DESCRIPTION
Extent 360 p. :
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References.
520 ## - SUMMARY, ETC.
Summary, etc. The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
533 ## - REPRODUCTION NOTE
Type of reproduction Electronic reproduction.
Place of reproduction Singapore :
Agency responsible for reproduction World Scientific Publishing Co.,
Date of reproduction 2014.
Note about reproduction System requirements: Adobe Acrobat Reader.
-- Mode of access: World Wide Web.
-- Available to subscribing institutions.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Lie algebras.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Group theory.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 1# - ADDITIONAL PHYSICAL FORM ENTRY
International Standard Book Number 9789814603270
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.worldscientific.com/worldscibooks/10.1142/9169#t=toc">http://www.worldscientific.com/worldscibooks/10.1142/9169#t=toc</a>
Public note ebook
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type E-Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Indian Institute of Technology Tirupati Indian Institute of Technology Tirupati 06/02/2018   512.55 EB00298 06/02/2018 06/02/2018 E-Books