Advances in Functional Separation Membranes / (Record no. 6676)

MARC details
000 -LEADER
fixed length control field 09642nam a2200229 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251213101809.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241210b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781839162879
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 660
Item number XinA
100 ## - MAIN ENTRY--AUTHOR NAME
Personal name Xin, Li
245 ## - TITLE STATEMENT
Title Advances in Functional Separation Membranes /
Statement of responsibility, etc Xin Li
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication London :
Name of publisher Royal Society of Chemistry,
Year of publication ©2022.
300 ## - PHYSICAL DESCRIPTION
Number of Pages xii,326p.
Accompanying material hbk
490 ## - SERIES STATEMENT
Series statement Chemistry in the Environment
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Contents -- 1 Introduction to Functional Membranes -- 1.1 Membrane Technology -- 1.2 Challenges and Limitations of Conventional Membrane Processes -- 1.2.1 Challenges of Membrane Materials and Membrane Preparation -- 1.2.2 Challenges in Membrane Performances for Essential Applications -- 1.2.3 Challenges in Sustainable Membrane Manufacturing Processes -- 1.3 Introduction of Functional Membranes -- 1.3.1 Gas Separation Membranes -- 1.3.2 Pervaporation Membranes -- 1.3.3 Aqueous Separation Membranes -- 1.3.4 Oil-Water Separation Membranes -- 1.3.5 Organic Solvent Separation Membranes -- 1.4 Application Fields of Functional Membranes -- 1.4.1 Gas Separation Fields -- 1.4.2 Pervaporation Fields -- 1.4.3 Aqueous Treatment -- 1.4.4 Petroleum Industrial Treatment -- 1.4.5 Organic Solvent Separation Fields -- Acknowledgements -- References -- 2 Catalytic Membranes for Aqueous Contaminant Degradation and Separation -- 2.1 Introduction -- 2.2 Development of Catalytic Membranes -- 2.2.1 Chem-catalytic Membranes -- 2.2.2 Bio-catalytic Membranes -- 2.3 Application -- 2.3.1 Micropollutant Removal -- 2.3.2 Dye Degradation -- 2.3.3 Multicomponent Wastewater Treatment -- 2.4 Conclusion and Perspective -- Acknowledgements -- References -- 3 Electromembranes for Water Treatment Driven by Electricity -- 3.1 Ion-exchange Membranes -- 3.1.1 Heterogeneous Membranes -- 3.1.2 Homogeneous Membranes -- 3.2 Electrodes -- 3.3 Spacers -- 3.4 Electrodialysis Setup -- 3.5 Electromembrane Process -- 3.5.1 Common Electrodialysis -- 3.5.2 Bipolar Membrane Electrodialysis (BMED) -- 3.5.3 CDI and Membrane Capacitive Deionization (MCDI) -- 3.5.4 Electrodeionization (EDI) -- 3.6 Application Cases -- 3.6.1 Sulfuric Acid Enrichment Application of AEMs in ED -- 3.6.2 Resource Recovery from Textile Wastewater -- References.<br/>4 Advanced Membranes Functionalized with Carbonbased 2D Nanomaterials for Liquid Separation -- 4.1 Introduction -- 4.2 Common Carbon-based 2D Nanomaterials for Membrane Functionalization -- 4.2.1 Nanoporous Graphene (NG) -- 4.2.2 Graphene Oxide (GO) -- 4.2.3 Reduced Graphene Oxide (rGO) -- 4.3 Relevant Approaches of Membrane Functionalization -- 4.3.1 Blending -- 4.3.2 Interfacial Polymerization -- 4.3.3 Surface Coating -- 4.3.4 Filtration-assisted Coating -- 4.3.5 Layer-by-layer (LbL) Assembly -- 4.3.6 Covalent Bonding -- 4.4 Applications of Functionalized Membranes in Liquid Separation -- 4.4.1 Desalination -- 4.4.2 Water Purification -- 4.4.3 Organic Solvent Dehydration -- 4.5 Technical Limitations of Functionalized Membranes -- 4.6 Environmental and Economic Impacts of Functionalized Membranes with Carbon-based 2D Nanomaterials -- 4.7 Conclusions and Perspectives -- References -- 5 Advanced Membranes Functionalized with Non-carbon-based 2D Nanomaterials for Liquid Separation -- 5.1 Introduction -- 5.2 Non-carbon-based 2D Nanomaterials Used for Membrane Design -- 5.2.1 Metal-Organic Frameworks (MOFs) Nanosheets -- 5.2.2 Covalent Organic Framework (COF) Nanosheets -- 5.2.3 MXenes -- 5.3 Fabrication of Non-carbon-based 2D Materials Membranes -- 5.3.1 Blending -- 5.3.2 Coating -- 5.3.3 -- Growth -- 5.3.4 Layer-by-layer Stacking -- 5.3.5 Interfacial Polymerization (IP) -- 5.4 The Application of Non-carbon-based 2D Materials Membranes in Liquid Separation -- 5.4.1 Water Treatment -- 5.4.2 Organic Solvent Nanofiltration -- 5.4.3 Pervaporation -- 5.5 Conclusion and Outlook -- Acknowledgements -- References -- 6 Mixed Matrix Membranes (MMMs) for Gas Separation -- 6.1 Introduction -- 6.2 Fabrication of Mixed Matrix Membranes (MMMs) -- 6.2.1 Methods/Techniques Applied to Prepare MMMs -- 6.2.2 Materials Used to Prepare MMMs.<br/>6.3 Challenges in Fabrication of MMMs -- 6.4 Performance and Optimization of MMMs in Gas Separation -- 6.5 Conclusion and Future Direction -- 6.5.1 Conclusion -- 6.5.2 Future Directions -- References -- 7 Applications of Ionic Liquidbased Materials in Membranebased Gas Separation -- 7.1 Introduction -- 7.2 Physicochemical Properties and Chemical Structures of Ionic Liquids -- 7.2.1 Physicochemical Properties of Ionic Liquids -- 7.2.2 Aprotic, Protic, and Zwitterionic Ionic Liquids -- 7.2.3 Task-specific Ionic Liquids (TSILs) -- 7.3 Different Configurations of Ionic Liquid-based Gas Separation Membranes -- 7.3.1 Supported Ionic Liquid Membranes (SILMs) -- 7.3.2 Poly(ionic liquid) (PIL) Membranes -- 7.3.3 Ionic Liquid Mixed-matrix Membranes (IL-MMMs) -- 7.3.4 Membrane Contactors Using ILs -- 7.4 Conclusion and Perspectives -- Abbreviations -- Ionic liquids -- Anions -- Poly(ionic liquids) -- Acknowledgements -- References -- 8 Omniphobic Membranes: Fundamentals, Materials, and Applications -- 8.1 Introduction -- 8.2 Omniphobic Membranes: Overview and Fundamentals -- 8.2.1 Fundamentals of Wettability on The Surface -- 8.2.2 Desirable Properties for a Omniphobic Membrane -- 8.3 Omniphobic Membranes: Anti-wetting and Anti-fouling Rationales -- 8.3.1 Membrane Wetting -- 8.3.2 Fouling Mechanism -- 8.4 Omniphobic Membranes: Materials and Fabrication -- 8.4.1 Base Membrane Materials -- 8.4.2 Fabrication Methods -- 8.5 Omniphobic Membranes: Applications -- 8.6 Conclusion -- References -- 9 Harnessing Janus Properties Towards Novel Membrane Applications -- 9.1 A Brief History of Janus Membranes -- 9.1.1 What Makes a Janus Membrane? -- 9.1.2 Why Janus Membranes? -- 9.2 Fabrication Technique for Janus Membranes -- 9.3 Unique Applications of Janus Membranes -- 9.3.1 Fluid Manipulation -- 9.3.2 Water Filtration Membranes -- 9.3.3 Membrane Distillation.<br/>9.3.4 Solar Energy Conversion -- 9.3.5 Ionic Batteries and Ionic Diodes -- 9.3.6 Catalysis -- 9.4 Emerging Types of Janus Membranes, Prospects and Challenges -- 9.5 Summary -- Acknowledgements -- References -- 10 Supramolecular Membranes for Liquid Separation -- 10.1 Introduction -- 10.2 Advantages and Disadvantages of Supramolecular Membranes -- 10.3 Supramolecular Chemistry -- 10.3.1 Supramolecular Interactions -- 10.3.2 Host-Guest Chemistry and Molecular Recognition -- 10.3.3 Molecular Recognition-directed Self-assembly -- 10.4 Fabrication of Supramolecular Membranes -- 10.4.1 Block Copolymer-based Supramolecular Membranes -- 10.4.2 Water-based Supramolecular Membranes -- 10.4.3 Polyelectrolyte-based Membranes -- 10.4.4 Liquid Crystal-based Membranes -- 10.4.5 Stimuli-responsive Supramolecular Membranes -- 10.5 Liquid Separation Applications -- 10.5.1 Ultrafiltration -- 10.5.2 Nanofiltration -- 10.5.3 Reverse Osmosis -- 10.5.4 Forward Osmosis -- 10.5.5 Other Applications -- 10.6 Conclusions -- References -- 11 3D Printed Functional Membranes for Water Purification -- 11.1 Introduction of 3D Printing -- 11.1.1 Fundamentals of 3D Printing Technology -- 11.1.2 Sustainability and Environmental Impact of 3D Printing -- 11.1.3 3D Printing in Membrane Technology -- 11.2 Current Techniques for Fabricating 3D Printed Membranes -- 11.2.1 Extrusion-based 3D printing -- 11.2.2 Inkjet Printing -- 11.2.3 Binder Jetting -- 11.2.4 Stereolithography (SLA) -- 11.2.5 Selective Laser Sintering -- 11.2.6 Digital Light Processing -- 11.3 Application of 3D Printed Membranes for Molecular-based Separation -- 11.3.1 Oil-Water Separation -- 11.3.2 Wastewater Treatment -- 11.3.3 Desalination -- 11.3.4 Other Applications -- 11.4 Challenges of 3D Printed Membranes -- 11.5 Future Prospect of 3D Printing Membranes -- References -- 12 Functional Membranes for Air Purification.<br/>12.1 Introduction -- 12.1.1 Sources of Air Pollutants -- 12.1.2 Types of Air Pollutants -- 12.1.3 Impacts of Air Pollution -- 12.1.4 Air Purification Methods -- 12.1.5 Aims and Outline of this Book Chapter -- 12.2 Functional Membranes for Air Purification -- 12.2.1 Ceramic Membranes -- 12.2.2 Nanofiber Membranes -- 12.2.3 Carbon Nanotube Membranes -- 12.2.4 Other Membranes -- 12.2.5 Properties of Air Purification Membranes -- 12.3 Membrane Application in Air Purification -- 12.3.1 Particulate Matter Removal -- 12.3.2 VOC Removal -- 12.3.3 Desulfuration -- 12.3.4 Denitration -- 12.3.5 Antibiosis -- 12.3.6 Simultaneous Removal of Gas Pollutants -- 12.4 Conclusion and Future Perspective -- Abbreviations -- References -- Subject Index.
520 ## - SUMMARY, ETC.
Summary, etc Membrane technology has received great popularity in many industrial sectors and significantly enhanced our abilities to restructure production processes, protect the environment and public health, and provide competitive strategies for separation and purification. However, the need for sustainable development has imposed new targets for this technology, such as more effective/precise separation and stricter admissible limits for the discharge of contaminants into the environment.<br/><br/>Focusing on hot topic environment-related applications, Advances in Functional Separation Membranes introduces emerging membranes nanoengineered with attractive functions and discusses their key features. It also provides a comprehensive guide to various design strategies for such functional membranes, making it useful reference for environmental chemists and membrane engineers alike.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical Term Chemical engineering
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Lin, Jiuyang
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Zhao, Shuaifei
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
Holdings
Withdrawn status Lost status Damaged status Collection code Home library Current library Shelving location Date acquired Source of acquisition Purchase Price Bill number Full call number Accession Number Print Price Bill Date/Price effective from Koha item type
      Chemical Engineering Indian Institute of Technology Tirupati Indian Institute of Technology Tirupati General Stacks 25/09/2025 Capital Books Pvt. Ltd. 12969.79 308/25-26 660 XinA (11821) 11821 18528.27 25/09/2025 Books