Amazon cover image
Image from Amazon.com

Complex Analysis / Theodore W. Gamelin

By: Material type: TextTextLanguage: English Series: Undergraduate Texts in MathematicsPublication details: New York: Springer; ©2001Description: xvi, 478pISBN:
  • 9780387950693
DDC classification:
  • 515 GamC
Summary: The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. It conists of sixteen chapters. The first eleven chapters are aimed at an Upper Division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied in the book include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, including UCLA, Brown University, the universities at La Plata and Buenos Aires, Argentina; and the Universidad Autonomo de Valencia, Spain.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 515 GAM (Browse shelf(Opens below)) Checked out 06/02/2026 05735
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 515 GAM (Browse shelf(Opens below)) Checked out 05/02/2026 05736
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 515 GAM (Browse shelf(Opens below)) Checked out 06/02/2026 05737
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 515 GAM (Browse shelf(Opens below)) Checked out 27/01/2026 05738

The book provides an introduction to complex analysis for students with some familiarity with complex numbers from high school. It conists of sixteen chapters. The first eleven chapters are aimed at an Upper Division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied in the book include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces. The three geometries, spherical, euclidean, and hyperbolic, are stressed. Exercises range from the very simple to the quite challenging, in all chapters. The book is based on lectures given over the years by the author at several places, including UCLA, Brown University, the universities at La Plata and Buenos Aires, Argentina; and the Universidad Autonomo de Valencia, Spain.

There are no comments on this title.

to post a comment.