Amazon cover image
Image from Amazon.com

Calculus of Variations I / Mariano Giaquinta & Stefan Hildebrandt

By: Contributor(s): Material type: TextTextLanguage: English Series: Grundlehren der mathematischen Wissenschaften ; v.310Publication details: Newyork: Springer; ©2009Description: xxix, 474pISBN:
  • 9783540506256
Subject(s): DDC classification:
  • 515.64 GiaC
Summary: This book describes the classical aspects of the variational calculus which are of interest to analysts, geometers and physicists alike. Volume 1 deals with the for­ mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as well as Hamilton­ Jacobi theory and the classical theory of partial differential equations of first ordel;. In a subsequent treatise we shall describe developments arising from Hilbert's 19th and 20th problems, especially direct methods and regularity theory. Of the classical variational calculus we have particularly emphasized the often neglected theory of inner variations, i. e. of variations of the independent variables, which is a source of useful information such as mono tonicity for­ mulas, conformality relations and conservation laws. The combined variation of dependent and independent variables leads to the general conservation laws of Emmy Noether, an important tool in exploiting symmetries. Other parts of this volume deal with Legendre-Jacobi theory and with field theories. In particular we give a detailed presentation of one-dimensional field theory for nonpara­ metric and parametric integrals and its relations to Hamilton-Jacobi theory, geometrical optics and point mechanics. Moreover we discuss various ways of exploiting the notion of convexity in the calculus of variations, and field theory is certainly the most subtle method to make use of convexity. We also stress the usefulness of the concept of a null Lagrangian which plays an important role in we give an exposition of Hamilton-Jacobi several instances.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
Books Books Indian Institute of Technology Tirupati General Stacks Mechanical 515.64 GIA/C (Browse shelf(Opens below)) Available 06931

This book describes the classical aspects of the variational calculus which are of interest to analysts, geometers and physicists alike. Volume 1 deals with the for­ mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as well as Hamilton­ Jacobi theory and the classical theory of partial differential equations of first ordel;. In a subsequent treatise we shall describe developments arising from Hilbert's 19th and 20th problems, especially direct methods and regularity theory. Of the classical variational calculus we have particularly emphasized the often neglected theory of inner variations, i. e. of variations of the independent variables, which is a source of useful information such as mono tonicity for­ mulas, conformality relations and conservation laws. The combined variation of dependent and independent variables leads to the general conservation laws of Emmy Noether, an important tool in exploiting symmetries. Other parts of this volume deal with Legendre-Jacobi theory and with field theories. In particular we give a detailed presentation of one-dimensional field theory for nonpara­ metric and parametric integrals and its relations to Hamilton-Jacobi theory, geometrical optics and point mechanics. Moreover we discuss various ways of exploiting the notion of convexity in the calculus of variations, and field theory is certainly the most subtle method to make use of convexity. We also stress the usefulness of the concept of a null Lagrangian which plays an important role in we give an exposition of Hamilton-Jacobi several instances.

There are no comments on this title.

to post a comment.