Amazon cover image
Image from Amazon.com

Introduction to Smooth Manifolds / John M. Lee

By: Material type: TextTextLanguage: English Series: Graduate Texts in Mathematics ; 218Publication details: New York : Springer, c2012.Edition: 2nd EdDescription: xv, 708pISBN:
  • 9781441999818
  • 1441999817
  • 9781441999825
  • 9781489994752
Subject(s): DDC classification:
  • 514.34 LeeI2
Contents:
1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
List(s) this item appears in: New Arrivals 01-15 Mar 2024, Vol. 05, Issue 06
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Barcode
Reference Reference Indian Institute of Technology Tirupati Reference Mathematics REF 514.34 LeeI2 (Browse shelf(Opens below)) Copy 1 Not for loan 10239
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 514.34 LeeI2 (Browse shelf(Opens below)) Copy 2 Available 10240
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 514.34 LeeI2 (Browse shelf(Opens below)) Copy 3 Available 10241

1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.

There are no comments on this title.

to post a comment.