Amazon cover image
Image from Amazon.com

SCADA security : machine learning concepts for intrusion detection and prevention / Abdulmohsen Almalawi, King Abdulaziz University, Zahir Tari, RMIT University, Adil Fahad, Al Baha University, Xun Yi, Royal Melbourne Institute of Technology.

By: Contributor(s): Material type: TextTextLanguage: English Series: Wiley series on parallel and distributed computingDescription: 1 online resourceISBN:
  • 9781119606352
  • 9781119606079
Subject(s): DDC classification:
  • 629.8/95583
Online resources: Summary: "This book provides insights into issues of SCADA security. Chapter 1 discusses how potential attacks against traditional IT can also be possible against SCADA systems. Chapter 2 gives background information on SCADA systems, their architectures, and main components. In Chapter 3, the authors describe SCADAVT, a framework for a SCADA security testbed based on virtualization technology. Chapter 4 introduces an approach called kNNVWC to find the k-nearest neighbours in large and high dimensional data. Chapter 5 describes an approach called SDAD to extract proximity-based detection rules, from unlabelled SCADA data, based on a clustering-based technique. In Chapter 6, the authors explore an approach called GATUD which finds a global and efficient anomaly threshold. The book concludes with a summary of the contributions made by this book to the extant body of research, and suggests possible directions for future research"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Barcode
E-Books E-Books Indian Institute of Technology Tirupati 629.8/95583 (Browse shelf(Opens below)) Available EB00792

"This book provides insights into issues of SCADA security. Chapter 1 discusses how potential attacks against traditional IT can also be possible against SCADA systems. Chapter 2 gives background information on SCADA systems, their architectures, and main components. In Chapter 3, the authors describe SCADAVT, a framework for a SCADA security testbed based on virtualization technology. Chapter 4 introduces an approach called kNNVWC to find the k-nearest neighbours in large and high dimensional data. Chapter 5 describes an approach called SDAD to extract proximity-based detection rules, from unlabelled SCADA data, based on a clustering-based technique. In Chapter 6, the authors explore an approach called GATUD which finds a global and efficient anomaly threshold. The book concludes with a summary of the contributions made by this book to the extant body of research, and suggests possible directions for future research"--

There are no comments on this title.

to post a comment.