Amazon cover image
Image from Amazon.com

Introduction to Random Graphs / Alan Frieze and Michał Karoński

By: Contributor(s): Material type: TextTextLanguage: English Publication details: Cambridge : Cambridge University Press, c2016.Description: xvii, 464pISBN:
  • 9781107118508
Subject(s): DDC classification:
  • 511.5 FriI
Contents:
Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Essential Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index.
Summary: "From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject"--
List(s) this item appears in: New Arrivals 16-31 Mar 2024, Vol. 05, Issue 07
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
Books Books Indian Institute of Technology Tirupati General Stacks Mathematics 511.5 FriI (Browse shelf(Opens below)) Available 10328

Machine generated contents note: Preface; Part I. Basic Models: 1. Random graphs; 2. Evolution; 3. Vertex degrees; 4. Connectivity; 5. Small subgraphs; 6. Spanning subgraphs; 7. Extreme characteristics; 8. Extremal properties; Part II. Essential Model Extensions: 9. Inhomogeneous graphs; 10. Fixed degree sequence; 11. Intersection graphs; 12. Digraphs; 13. Hypergraphs; Part III. Other Models: 14. Trees; 15. Mappings; 16. k-out; 17. Real-world networks; 18. Weighted graphs; 19. Brief notes on uncovered topics; Part IV. Tools and Methods: 20. Moments; 21. Inequalities; 22. Differential equations method; 23. Branching processes; 24. Entropy; References; Author index; Main index.

"From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject"--

There are no comments on this title.

to post a comment.