Hands-on Machine Learning with Scikit-Learn & TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems / AurÈlien GÈron
Material type:
TextLanguage: English Description: xx, 551pISBN: - 9789352135219
- 006.31 GerH
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Reference
|
Indian Institute of Technology Tirupati Reference | Computer Science | REF 006.31 GerH (Browse shelf(Opens below)) | Not for loan | 05979 | ||
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Checked out | 31/01/2026 | 05980 | |
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Available | 05981 | ||
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Checked out | 17/01/2026 | 05982 | |
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Checked out | 19/01/2026 | 05983 | |
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Checked out | 13/02/2026 | 05984 | |
Books
|
Indian Institute of Technology Tirupati General Stacks | Computer Science | 006.31 GER/H (Browse shelf(Opens below)) | Checked out | 13/02/2026 | 05985 |
Graphics in this book are printed in black and white. Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory and two production-ready Python frameworksóscikit-learn and TensorFlowóauthor AurÈlien GÈron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. Youíll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. with exercises in each chapter to help you apply what youíve learned, all you need is programming experience to get started.
Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end
Explore several training models, including support vector machines, decision trees, random forests and ensemble methods
Use the TensorFlow library to build and train neural nets
Dive into neural net architectures, including convolutional nets, recurrent nets and deep reinforcement learning
Learn techniques for training and scaling deep neural nets
Apply practical code examples without acquiring excessive machine learning theory or algorithm details
There are no comments on this title.