000 03710nam a2200313 a 4500
001 00006226
003 WSP
005 20230529172017.0
006 m d
007 cr buu|||uu|||
008 091123s2014 si a sb 001 0 eng d
020 _a9789814603287
040 _aWSPC
_beng
_cWSPC
082 0 4 _a512.55
100 1 _aDas, Ashok and Okubo, Susumu
245 1 0 _aLie Groups and Lie Algebras for Physicists
260 _aSingapore ;
_bWorld Scientific Pub. Co.,
_c©2014.
300 _a360 p. :
504 _aIncludes bibliographical references and index.
505 0 _a1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References.
520 _aThe book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
533 _aElectronic reproduction.
_bSingapore :
_cWorld Scientific Publishing Co.,
_d2014.
_nSystem requirements: Adobe Acrobat Reader.
_nMode of access: World Wide Web.
_nAvailable to subscribing institutions.
650 0 _aLie algebras.
650 0 _aGroup theory.
655 0 _aElectronic books.
776 1 _z9789814603270
856 4 0 _uhttp://www.worldscientific.com/worldscibooks/10.1142/9169#t=toc
_zebook
942 _2ddc
_cEBK
999 _c2368
_d2368