| 000 | 01188cam a22002417a 4500 | ||
|---|---|---|---|
| 005 | 20240312161814.0 | ||
| 008 | 120725s2013 nyua b 001 0 eng d | ||
| 020 | _a9781441999818 | ||
| 020 | _a1441999817 | ||
| 020 | _a9781441999825 | ||
| 020 | _a9781489994752 | ||
| 041 | _aeng | ||
| 082 | 0 | 4 |
_a514.34 _bLeeI2 |
| 100 | 1 | _aLee, John M. | |
| 245 | 1 | 0 |
_aIntroduction to Smooth Manifolds / _cJohn M. Lee |
| 250 | _a2nd Ed. | ||
| 260 |
_aNew York : _bSpringer, _cc2012. |
||
| 300 | _axv, 708p. | ||
| 440 |
_aGraduate Texts in Mathematics _v218 |
||
| 505 | 0 | _a1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices. | |
| 650 | 0 | _aManifolds (Mathematics) | |
| 942 | _cBK | ||
| 999 |
_c5562 _d5562 |
||