000 01188cam a22002417a 4500
005 20240312161814.0
008 120725s2013 nyua b 001 0 eng d
020 _a9781441999818
020 _a1441999817
020 _a9781441999825
020 _a9781489994752
041 _aeng
082 0 4 _a514.34
_bLeeI2
100 1 _aLee, John M.
245 1 0 _aIntroduction to Smooth Manifolds /
_cJohn M. Lee
250 _a2nd Ed.
260 _aNew York :
_bSpringer,
_cc2012.
300 _axv, 708p.
440 _aGraduate Texts in Mathematics
_v218
505 0 _a1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
650 0 _aManifolds (Mathematics)
942 _cBK
999 _c5562
_d5562