Amazon cover image
Image from Amazon.com

Mobile Robot : Motion Control and Path Planning / Ahmad Taher Azar, Ibhraheem Kasim Ibraheem, Amjad Jaleel Humaidi

Contributor(s): Series: Studies in Computational Intelligence v.1090Publication details: Cham : Springer, ©2023.Description: xi,670pISBN:
  • 9783031265631
Subject(s): DDC classification:
  • 629.8  AzaM
Summary: This book presents the recent research advances in linear and nonlinear control techniques. From both a theoretical and practical standpoint, motion planning and related control challenges are key parts of robotics. Indeed, the literature on the planning of geometric paths and the generation of time-based trajectories, while accounting for the compatibility of such paths and trajectories with the kinematic and dynamic constraints of a manipulator or a mobile vehicle, is extensive and rich in historical references. Path planning is vital and critical for many different types of robotics, including autonomous vehicles, multiple robots, and robot arms. In the case of multiple robot route planning, it is critical to produce a safe path that avoids colliding with objects or other robots. When designing a safe path for an aerial or underwater robot, the 3D environment must be considered. As the number of degrees of freedom on a robot arm increases, so does the difficulty of path planning.As a result, safe pathways for high-dimensional systems must be developed in a timely manner. Nonetheless, modern robotic applications, particularly those requiring one or more robots to operate in a dynamic environment (e.g., human–robot collaboration and physical interaction, surveillance, or exploration of unknown spaces with mobile agents, etc.), pose new and exciting challenges to researchers and practitioners. For instance, planning a robot's motion in a dynamic environment necessitates the real-time and online execution of difficult computational operations. The development of efficient solutions for such real-time computations, which could be offered by specially designed computational architectures, optimized algorithms, and other unique contributions, is thus a critical step in the advancement of present and future-oriented robotics.
List(s) this item appears in: New Arrivals 01-15 November 2025, Vol. 06, Issue 30
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Barcode
Reference Reference Indian Institute of Technology Tirupati Reference Computer Science REF 629.8 AzaM (11600) (Browse shelf(Opens below)) Not for loan 11600

This book presents the recent research advances in linear and nonlinear control techniques. From both a theoretical and practical standpoint, motion planning and related control challenges are key parts of robotics. Indeed, the literature on the planning of geometric paths and the generation of time-based trajectories, while accounting for the compatibility of such paths and trajectories with the kinematic and dynamic constraints of a manipulator or a mobile vehicle, is extensive and rich in historical references. Path planning is vital and critical for many different types of robotics, including autonomous vehicles, multiple robots, and robot arms. In the case of multiple robot route planning, it is critical to produce a safe path that avoids colliding with objects or other robots. When designing a safe path for an aerial or underwater robot, the 3D environment must be considered. As the number of degrees of freedom on a robot arm increases, so does the difficulty of path planning.As a result, safe pathways for high-dimensional systems must be developed in a timely manner.

Nonetheless, modern robotic applications, particularly those requiring one or more robots to operate in a dynamic environment (e.g., human–robot collaboration and physical interaction, surveillance, or exploration of unknown spaces with mobile agents, etc.), pose new and exciting challenges to researchers and practitioners.

For instance, planning a robot's motion in a dynamic environment necessitates the real-time and online execution of difficult computational operations. The development of efficient solutions for such real-time computations, which could be offered by specially designed computational architectures, optimized algorithms, and other unique contributions, is thus a critical step in the advancement of present and future-oriented robotics.

There are no comments on this title.

to post a comment.